Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell Biochem Biophys ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498099

ABSTRACT

In vitro cellular models provide valuable insights into the adaptive biochemical mechanisms triggered by cells to cope with the stress situation induced by hypoxia and reoxygenation cycles. The first biological data generated in studies based on this micrometric life-scale has the potential to provide us a global overview about the main biochemical phenomena presented in some reported preconditioning therapies in life-scale of higher dimensions. Thus, in this study, a cell incubator was designed and manufactured to produce a cellular model of heart hypoxia followed by reoxygenation (HfR) through consecutive repetitions of hypoxia-normoxia gas exchange. Samples of cellular extracts and culture media were obtained from non-proliferative cardiomyocytes (CMs) cultivated under challenging HfR (stressed CMs) and regular cultivation (unstressed CMs) in rounds of four days for each case. Metabolomic based on proton magnetic resonance spectroscopy (1H-MRS) was used as an analytical approach to identify and quantify the metabolomes of these samples, the endo- and exo-metabolome. Despite the stressed CMs presented over 90% higher cellular death rate compared to the unstressed CMs, the metabolic profiles indicates that the surviving cells up-regulate their amino acid metabolism either by active protein degradation or by the consumption of culture media components to increase coenzyme A-dependent metabolic pathways. This cell auto-regulation mechanism could be well characterized in the first two days when the difference smears off under once the metabolomes become similar. The metabolic adaptations of stressed CMs identified the relevance of the cyclic oxidation/reduction reactions of nicotinamide adenine dinucleotide phosphate molecules, NADP+/NADPH, and the increased tricarboxylic acid cycle activity in an environment overloaded with such a powerful antioxidant agent to survive an extreme HfR challenge. Thus, the combination of cellular models based on CMs, investigative methods, such as metabolomic and 1H-MRS, and the instrumental development of hypoxia incubator shown in this work were able to provide the first biochemical evidences behind therapies of gaseous exchanges paving the way to future assays.

2.
Indian J Otolaryngol Head Neck Surg ; 75(Suppl 1): 893-900, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37206760

ABSTRACT

In chronic rhinosinusitis with nasal polyps, inflammatory edema drives tissue remodeling favoring anomalous growth of the nasal mucosa, but a proangiogenic contribution of nasal polyp in support of tissue growth is still controversial. The chorioallantoic membrane of chicken embryo model was employed to address the potentiality of nasal tissue fragments to modulate angiogenesis. Fifty-seven fertilized eggs were implanted with polyp or healthy nasal mucosa tissue or were kept as non-implanted controls. The embryos' size, length, and development stage, and chorioallantoic membrane vasculature morphology were evaluated after 48 h. Quantitative computer vision techniques applied to digital chorioallantoic membrane images automatically calculated the branching index as the ratio between the areas of the convex polygon surrounding the vascular tree and the vessels' area. Ethics approval and consent to participate: the study was approved by the Human Research Ethics Committee of the Federal University of São Paulo (CAAE number: 80763117.1.0000.5505) and by the Animal Research Ethics Committee of University of São Paulo (nº CEUA 602-2019). Mucosal, but not polyp tissue implants, hampered embryo development and induced underdeveloped chorioallantoic membranes with anastomosed, interrupted, and regressive vessels. Vessels' areas and branching indexes were higher among the chorioallantoic membranes with polyp implants and controls than among those with healthy mucosa implants. Nasal polyp presents differential angiogenic induction that impacts tissue growth.

3.
In Vitro Cell Dev Biol Anim ; 56(8): 604-613, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32914385

ABSTRACT

Knockout of multifunction gene cysteine- and glycine-rich protein 3 (CSRP3) in cardiomyocytes (CMs) of mice leads to heart dilation, severely affecting its functions. In humans, CSRP3 mutations are associated with hypertrophic (HCM) and dilated cardiomyopathy (DCM). The absence of the CSRP3 expression produces unknown effects on in vitro neonatal CMs' metabolism. The metabolome changes in culture media conditioned by CSRP3 knockout (KO-CSRP3), and wild type (WT) neonatal cardiomyocytes were investigated under untreated or after metabolic challenging conditions produced by isoproterenol (ISO) stimulation, by in vitro high-resolution proton magnetic resonance spectroscopy (1H-MRS)-based metabolomics. Metabolic differences between neonatal KO-CSRP3 and WT rats' CMs were identified. After 72 h of culture, ISO administration was associated with increased CMs' energy requirements and increased levels of threonine, alanine, and 3-hydroxybutyrate in both neonatal KO-CSRP3 and WT CMs conditioned media. When compared with KO-CSRP3, culture media derived from WT cells presented higher lactate concentrations either under basal or ISO-stimulated conditions. The higher activity of ketogenic biochemical pathways met the elevated energy requirements of the contractile cells. Both cells are considered phenotypically indistinguishable in the neonatal period of animal lives, but the observed metabolic stress responses of KO-CSRP3 and WT CMs to ISO were different. KO-CSRP3 CMs produced less lactate than WT CMs in both basal and stimulated conditions. Mainly, ISO-stimulated conditions produced evidence for lactate overload within KO-CSRP3 CMs, while WT CMs succeeded to manage the metabolic stress. Thus, 1H-MRS-based metabolomics was suitable to identify early inefficient energetic metabolism in neonatal KO-CSRP3 CMs. These results may reflect an apparent lower lactate transport and consumption, in association with protein catabolism.


Subject(s)
Culture Media/chemistry , LIM Domain Proteins/metabolism , Muscle Proteins/metabolism , Myocytes, Cardiac/metabolism , Proton Magnetic Resonance Spectroscopy , Animals , Animals, Newborn , Cell Shape , Discriminant Analysis , Isoproterenol/pharmacology , LIM Domain Proteins/deficiency , Least-Squares Analysis , Muscle Proteins/deficiency , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Rats , Statistics as Topic
5.
Tissue Eng Part A ; 24(11-12): 882-888, 2018 06.
Article in English | MEDLINE | ID: mdl-29160181

ABSTRACT

Human dental stem cells (hDSC) have a potential for regenerative therapies and could differentiate in vitro into many tissues, such as dentin, nerve, and vascular endothelium. Gallus gallus domesticus developing fertilized egg or chick embryo is an experimental model absent of xenografts rejection, largely employed in replacement of mammal species in scientific research and preclinical studies to evaluate angiogenesis and vasculogenesis, tissue differentiation, and embryonic development. This multiscale research deals with the homing and cell signaling effects of a standardized hDSC toward the receptor tissues of G. gallus domesticus in ovo. The hDSC were obtained from the explantation from third molars, characterized by cell cytometry, and employed without any further purification procedure. Four experimental groups were studied, according to the kind of cell tracing strategy, named: Control, mCherry-labeled hDSC, QTracker-labeled hDSC, and QTracker-exposed controls. The eggs were kept in an incubator temperature of 37.6°C and humidity 86%, and the embryos were euthanized after 10 days of incubation. In vivo fluorescence and histological analysis were conducted. The fluorescence of the embryos inoculated with mCherry hDSC or the QTracker hDSC was associated with the bones and the beak tooth, and labeled cell islands could be localized in part of the samples. The inoculation of the QTracker probe resulted in proliferating bone tissue labeling. The hDSC inoculated groups presented cartilage plate hypertrophy and atypical morphology, meanwhile Control eggs were negative. The results demonstrated that hDSC can migrate to the cartilaginous tissues of the chick embryos, survive in this environment, implant, and interfere with the growth of developing bone.


Subject(s)
Dental Pulp/cytology , Stem Cells/cytology , Tissue Engineering/methods , Animals , Cell Movement/physiology , Cell Proliferation/physiology , Chick Embryo , Humans
6.
Tissue Eng Part A, v. 24, n. 11-12, p. 882-888, jun. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2476

ABSTRACT

Human dental stem cells (hDSC) have a potential for regenerative therapies and could differentiate in vitro into many tissues, such as dentin, nerve, and vascular endothelium. Gallus gallus domesticus developing fertilized egg or chick embryo is an experimental model absent of xenografts rejection, largely employed in replacement of mammal species in scientific research and preclinical studies to evaluate angiogenesis and vasculogenesis, tissue differentiation, and embryonic development. This multiscale research deals with the homing and cell signaling effects of a standardized hDSC toward the receptor tissues of G. gallus domesticus in ovo. The hDSC were obtained from the explantation from third molars, characterized by cell cytometry, and employed without any further purification procedure. Four experimental groups were studied, according to the kind of cell tracing strategy, named: Control, mCherry-labeled hDSC, QTracker-labeled hDSC, and QTracker-exposed controls. The eggs were kept in an incubator temperature of 37.6 degrees C and humidity 86%, and the embryos were euthanized after 10 days of incubation. In vivo fluorescence and histological analysis were conducted. The fluorescence of the embryos inoculated with mCherry hDSC or the QTracker hDSC was associated with the bones and the beak tooth, and labeled cell islands could be localized in part of the samples. The inoculation of the QTracker probe resulted in proliferating bone tissue labeling. The hDSC inoculated groups presented cartilage plate hypertrophy and atypical morphology, meanwhile Control eggs were negative. The results demonstrated that hDSC can migrate to the cartilaginous tissues of the chick embryos, survive in this environment, implant, and interfere with the growth of developing bone.

7.
Tissue Eng Part A ; 24(11-12): p. 882-888, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15143

ABSTRACT

Human dental stem cells (hDSC) have a potential for regenerative therapies and could differentiate in vitro into many tissues, such as dentin, nerve, and vascular endothelium. Gallus gallus domesticus developing fertilized egg or chick embryo is an experimental model absent of xenografts rejection, largely employed in replacement of mammal species in scientific research and preclinical studies to evaluate angiogenesis and vasculogenesis, tissue differentiation, and embryonic development. This multiscale research deals with the homing and cell signaling effects of a standardized hDSC toward the receptor tissues of G. gallus domesticus in ovo. The hDSC were obtained from the explantation from third molars, characterized by cell cytometry, and employed without any further purification procedure. Four experimental groups were studied, according to the kind of cell tracing strategy, named: Control, mCherry-labeled hDSC, QTracker-labeled hDSC, and QTracker-exposed controls. The eggs were kept in an incubator temperature of 37.6 degrees C and humidity 86%, and the embryos were euthanized after 10 days of incubation. In vivo fluorescence and histological analysis were conducted. The fluorescence of the embryos inoculated with mCherry hDSC or the QTracker hDSC was associated with the bones and the beak tooth, and labeled cell islands could be localized in part of the samples. The inoculation of the QTracker probe resulted in proliferating bone tissue labeling. The hDSC inoculated groups presented cartilage plate hypertrophy and atypical morphology, meanwhile Control eggs were negative. The results demonstrated that hDSC can migrate to the cartilaginous tissues of the chick embryos, survive in this environment, implant, and interfere with the growth of developing bone.

8.
São Paulo; SMS; abr. 2016. [2] p.
Non-conventional in Portuguese | Sec. Munic. Saúde SP, Sec. Munic. Saúde SP | ID: sms-11807
10.
Rev. Col. Bras. Cir ; 32(4): 168-172, jul.-ago. 2005. ilus
Article in Portuguese | LILACS | ID: lil-417995

ABSTRACT

OBJETIVO: Estudar o efeito da N-acetilcisteína (NAC) na isquemia hepática. MÉTODO: Trinta e oito ratos machos EPM-1 Wistar foram distribuídos em quatro grupos. Nos Grupos 1 e 2 foi realizado 30 min de clampeamento do hilo hepático, e nos Grupos 3 e 4 os animais foram submetidos a 30 minutos de isquemia sem clampleamento do ducto biliar. Os animais dos Grupos 2 e 4 receberam 150mg.Kg-1 de NAC, endovenoso, 15 minutos antes do procedimento. Colheu-se sangue antes do procedimento e após o clampeamento do pedículo para a dosagem enzimática. Amostras de fígado foram coletadas para dosagem de glutationa, microscopia óptica e eletrônica. No estudo estatístico aplicaram-se testes não paramétricos, p < 0,05. RESULTADOS: O aumento das enzimas foi menor quando se administrou NAC, sendo semelhante na ausência do clampeamento da via biliar. A microscopia óptica houve diferença significante dos grupos S/NAC X C/NAC, mostrando que o grupo C/NAC manteve a arquitetura do parênquima durante a isquemia, independente do clampeamento do ducto biliar. Na microscopia eletrônica os grupos C/NAC e os sem clampeamento do ducto biliar apresentaram arquitetura celular preservada. A NAC não alterou a relação de glutationa reduzida/ glutationa oxidada (GSH/GSSG). CONCLUSÕES: A NAC é capaz de proteger o parênquima hepático durante a isquemia normotérmica e propõe-se que o mecanismo seja por reação direta da NAC com o óxido nítrico (NO).

11.
Säo Paulo; s.n; 1996. 100 p. ilus, tab, graf.
Thesis in Portuguese | LILACS | ID: lil-226199

ABSTRACT

A produçäo de radicais de carbono "in vivo" durante a biotransformaçäo da hidrazina foi demonstrada por ressonância paramagnética eletrônica, utilizando o método do captador de spin. Eritrócitos de rato também oxidaram a hidrazina, formando radicais de carbono e nitrogênio, além de espécies reativas de oxigênio. Todas estas espécies, possivelmente formadas "in vivo", säo potencialmente causadoras de dano a macromoléculas. Podem, por exemplo, iniciar reaçöes secundárias formando radicais de componentes celulares, como ocorreu com a hemoglobina que foi oxidada a radicais tiil-hemoglobina em eritrócitos tratados com hidrazina. Radicais de carbono formados durante a biotransformaçäo da hidrazina em animais expostos provêm necessariamente de substâncias endógenas e podem ser direta ou indiretamente responsáveis pela modificaçäo (alquilaçäo) de bases no DNA "in vivo"...


Subject(s)
Animals , Rats , Alkylation , Cell Line , DNA , Formaldehyde , Free Radicals , Hydrazines/toxicity , Carcinogens , Chromatography, Liquid/methods , Electron Spin Resonance Spectroscopy , Erythrocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...